

Fetal GU Anomalies

Roya Sohaey MD

Professor of Diagnostic Radiology

Date: 12/03/2013

Disclosure

Author and stockholder Amirsys publishing

Graphics with permission from Amirsys will be delineated with amirsys logo

AMIRSYS*

Outline

Mild hydronephrosis

- Significant hydronephrosis
 - Case-based

- Renal cystic dysplasia
 - Differential diagnosis

Mild Hydronephrosis: causes

- Incidence: 1-5%
- Common benign causes:
 - Maternal progesterone influence on renal pelvis
 - Natural narrowing of UPJ (kinks and folds)
 - Occur early in development & resolve with growth
- Less common significant causes
 - Obstruction and reflux
 - Aneuploidy in 0.3 to 0.9% (most common T21)
 - Likelihood ratio of 1.5-1.9
 - (Society of Genetic Counselors, 2010 guidelines)
 - Amniocentesis?
 - Only in the setting of additional high risk factors/findings

Pelviectasis: Diagnostic criteria

- Increased renal pelvis anterior-posterior diameter
 - Midrenal axial view
- By the numbers:
 - ≥ 3 mm in first trimester
 - ≥ 4 mm at 14-22 weeks
 - ≥ 5 mm at 22-32 weeks
 - ≥ 7 mm after 32 week
- Limitations of using AP diameter only
 - Only evaluating renal pelvis

Society For Fetal Urology (SFU) grading system use longitudinal views to asses calyces

	Descriptors	Grade 0
Grade 0	No fluid in renal sinus fat	
Grade 1	Fluid barely splits sinus fat	
Grade 2	Urine fills intrarenal pelvis	Grade 1
	Urine fills extra renal pelvis + major calyces	
Grade 3	SFU 2 + minor calyces uniformly dilated and parenchyma preserved	Grade 2
Grade 4	SFU 3 + thin or cystic parenchyma	Grade 3

Grade 4

www.uab.edu/images/peduro/SFU/sfu_grading_on_web/sfu_grading_on_web.htm

Society for Fetal Urology (SFU) grading system

- In pediatric population:
 - Good inter-rater agreement
 - Predictive of outcome

	SFU 1	SFU 2	SFU 3	SFU 4
Stable	100%	87% (144)	30% (37)	0%
Surgery		13%(21)	70% (85)	100%
Outcome	Benign	Benign	Surveillance +/- surgery	

Yang Y, etal, Journal of Ped Surg (2010) 45: 1701-6

- Can we use this grading system for prenatal diagnosis?
 - We don't know yet: good inter-rater agreement
- We should at least use better descriptors

Case example: mild to asymmetric severe

Diagnosis: UPJ Obstruction

Case Example: Stable persistent mild

Final Diagnosis: Bilateral reflux

Pelviectasis Summary

- AP diameter
 - > 4 mm before 22 wks
 - ≥ 7 mm after 32 wks
- Note degree of calyceal dilatation and appearance of parenchyma
 - consider using SFU grading system
- Know your patient
 - Low risk or high risk for aneuploidy and/or obstructive uropathy
- Suggest post natal imaging
 - Ultrasound (preferably after 72 hours)
 - VCUG

Significant Hydronephrosis: A Case based approach

- Morphology of distention
 - Upper tract
 - Mid tract
 - Lower tract
- Affect on renal parenchyma
- Affect on amniotic fluid

Case Example: severe unilateral hydronephrosis

Ureteropelvic junction (UPJ) obstruction

- Imaging Pearls
 - Pelvis + calyceal dilatation only
 - Pelvis ends abruptly "bullet shaped"
- Partial > complete obstruction
- 10% bilateral
- 25% with contra lateral anomaly
- Incidence
 - **1:2000**
 - 20% all cases of hydronephrosis
 - Males > females
 - Not associated with aneuploidy or genetic syndromes

Ureteropelvic junction (UPJ) obstruction

- Possible etiologies
 - Abnormal muscularis layer or neural innervation at UPJ
 - 1/3 may have accessory crossing vessel
- Complications:
 - Obstructive renal dysplasia
 - Urinoma

UPJ: 2 cases with urinoma

New diagnosis: Case at 21 weeks

Diagnosis: Renal duplication with ureterocele

Postnatal Ultrasound

VCUG– Ureterocele and Reflux Drooping lily sign

Renal Duplication

Weigert Meyer Rule

- Upper pole with ectopic ureter
 - Inserts medial and inferior to trigone
- Lower pole with reflux

Duplicated collecting system: imaging pearls

- Be suspicious when hydronephrosis is limited to upper pole
 - good longitudinal views
- Ureterocele in bladder is the key finding
 - May be large and can mimic bladder
 - May obstruct urethra or other ureter
- Bilateral hydronephrosis in 10-20%
- Twice as common in female fetuses

New Diagnosis: Case 20 weeks fetus

Lower urinary tract obstruction (LUTO) Posterior urethral valves – Imaging pearls

- Variable hydronephrosis (may see echogenic kidneys) +/- ureter dilatation
- Dilated thick walled bladder
- Dilated posterior urethra: funnel, keyhole
- Decreased or absent Amniotic fluid

LUTO – urethral obstruction: Antenatal counseling and management

Two main concerns:

- Renal injury
 - 25-30% survivors with ESRD
 - Early dialysis then transplant
- An/Oligohydramnios
 - Single most important prognostic feature
 - Pulmonary hypoplasia
 - 45-55% mortality
- Bypass the urethra?

Therapeutic option

Vesicocentesis
 Assess electrolytes looking for a favorable profile
 Na <100, Cl <90, Osm <210 mEq/L, Ca, PO4, & β2

microglobulin all <2mmol/L.

Vesicoamniotic shunt

Bladder Shunting

- Complications in 1/3 shunt dysfunction, PPROM, infection/chorioamnionitis,
- Shunting improves survival improves pulmonary function
- Residual renal dysfunction still poor in most cases

Case: Not all dilated bladders are PUV:

Prune Belly Syndrome

- 3 components
 - Dramatic collecting system dilatation
 - Deficiency of abdominal musculature
 - Cryptorchidism
- Findings overlap w/ PUV
 - Less likely keyhole sign
 - Ureter more likely dilated
 - Entire urethra may be dilated
 - Oligohydramnios often not as severe
 - Small chest but often not as severe as with LUTO

Prune Belly: Counseling and management

- More rare than PUV
 - $\sim 4/100,000$ live births
- Males >> Females
- Inheritance/Etiology?
 - Associated with aneuploidy and other genetic defects
- Neonate issues/anomalies
 - Pulmonary hypoplasia
 - Renal dysfunction (50% ESRD)
 - GI malrotation and anorectal anomalies

Case: Not all distended pelvic structures are bladder

Case: Fetal MR

Cloacal Malformation

- Failure of early cloaca division
- Spectrum of abnormal anatomy related to time of arrest
- Classic: coalescence of urethra, vagina, and hindgut with single draining perineal orifice
- DDX: hydrocolpus,
 Urogenital sinus: bladder
 + vaginal connections
 only

Renal Cystic Dysplasia

OBSTRUCTIVE RENAL DYSPLASIA

MULTICYSTIC DYSPLASTIC KIDNEY (MCDK)

AUTOSOMAL RECESSIVE POLYCYSTIC KIDNEY DISEASE (ARPCKD)

ANEUPLOIDY AND SYNDROMES

Obstructive Renal Dysplasia

- Tubular destruction and cyst formation due to increased pressure in collecting system
- Most common cause is posterior urethral valves
 - UPJ, UVJ less common

Obstructive renal dysplasia

- Imaging Pearls
 - Variable hydronephrosis
 - Hyperechoic kidney
 - Early: Loss of corticomedullary distinction (lose hypoechoic pyramids)
 - Cysts (late)
- Renal size may be ↑, ↓, NI
 - ↓ size suggests late finding (poor prognostic sign)

Two fetuses with PUV

Multicystic dysplastic kidney

- Multiple noncommunicating cysts of variable size
- Reniform shape often lost (not always)
- Bilateral MCDK in 20%
- Contralateral other renal anomaly in 40% (UPJ, agenesis)
- Can enlarge dramatically in fetal life
- Tend to decrease in size in neonatal life
- Most of the time, the kidney affected does not work

MCDK vs Post obstructive dysplasia?

2 cases antenatal dx: MCDK

1 case prenatal dx: Post Obst CD Post natal: MCDK

Autosomal recessive polycystic kidney disease (ARPKD)

- Ectasia of collecting ducts and distal tubules
- Imaging pearls:
 - Enlarged, hyperechoic kidneys+/- visible cysts
 - Hypoechoic cortex may be seen (affects tubules> cortex)
- Variable oligohydramnios

ARPCKD Imaging pearl: relatively "spared" hypoechoic cortex

Case 1

ARPCKD Imaging pearl: Variable fluid: prognosis depends on amount of pulmonary hypoplasia

Case 3

Fetal GU Anomalies

OTHER CAUSES OF BILATERAL CYSTIC KIDNEYS

Diagnosis: Meckel Gruber Syndrome

Second pregnancy 2 years later

Meckel-Gruber Features

Renal cystic dysplasia in 95-100% Cephalocele other CNS anomaly in 90% Postaxial polydactyly: 55-75%

At least 2 of 3 classic features required for the clinical diagnosis

Autosomal recessive pattern

Genetic testing available (8 genes identified, 6 gene panel)

Trisomy 13

- Renal anomalies in 50%
 - Cystic dysplasia
 - Hydronephrosis, duplications
- CNS anomalies in 70%
 - Holoprosencephaly
- Cardiac anomalies 80%
- Facial anomalies 50%
- Skeletal anomalies 50%

Renal Cystic Dysplasia

Diagnosis	Unilateral or Bilateral	Imaging Pearls	Kidney size	Associations	Prognosis
Post obstructive cystic dysplasia	Bilateral or unilateral	Cortical cysts Partial if duplicated	Normal or small	PUV > UPJ, ureterocele	Excellent if unilateral
MCDK	L>R, 20% Bi	Scattered cysts of variable size	Increased	40% contralateral renal anomaly	Excellent if unilateral
ARPCKD	Bilateral	Echogenic kidney with cortical sparing	Increased	Hepatic disease in pediatric pop	Poor if pulmonary hypoplasia
Meckel Gruber	Bilateral	Echogenic kidneys +/- cysts	Increased	Encephalocele polydactyly	Poor/fatal
Trisomy 13	Bilateral	Echogenic kidneys +/- cysts	Increased	Holoprosencephaly Polydactyly Heart defect	Poor/Fatal

THE END....MY BRAIN IS FULL!!

THANK YOU FOR YOUR ATTENTION

References

- 1) Nguyen HT, Herndon CDA, Cooper C, et. Al. The Society of Fetal Urology consensus statement on the evaluation and management of antenatal hydronephrosis. *J of Ped Uro* 2010;6:212-31.
- 2) Fernbach SK, Maizels M, Conway JJ. Ultrasound grading of hyronephrosis: introduction to the system used by the Society for Fetal Urology. *Pediatr Radiol* 1993;23:478-480.
- 3) Lee RS, Cendron M, Kinnamon DD, et al. Antenatal Hydronephrosis as a Predictor of Postnatal Outcome: A Meta –Analysis. *Pediatrics* 2006;118: 586-593.
- 4) Morris RK, Kilby MD. An overview of the literature on congenital lower urinary tract obstruction and introduction to the PLUTO trial: Percutaneous shunting in lower urinary tract obstruction. *Australian and New Zealand J of Obstet and Gynecol* 2009;49:6-10.
- 5) Mallik M, Watson AR. Antenatally detected urinary tract abnormalities: more detection but less action. *Pediatr Nephrol* 2008;23:897-904.
- 6) Dhillon HK. Prenatally diagnosed hydronephrosis: the Great Ormond Street experience. *Br J Urol* 1998;81:39-44.
- 7) Woodward PW, Kennedy AK, Sohaey R, et al. Diagnostic Imaging: Obstetrics Amirsys Publishing, 2011, SLC, UT.